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NUMERICAL EFFICIENCY OF EXPLICIT AND IMPLICIT
METHODS WITH MULTIGRID FOR LARGE EDDY
SIMULATION

S. ERTEM-MULLER AND M. SCHAFER
Darmstadt University of Technology, Department of Numerical
Methods in Mechanical Engineering,
Petersenstr. 30, 64287 Darmstadt, Germany

Abstract. In this paper the accuracy and efficiency of a finite-volume
multigrid solver for Large Eddy Simulation (LES) is investigated. The spa-
tial discretization method employed is a second-order accurate central dif-
ferencing scheme. For time discretization of the momentum equations the
implicit second-order Crank-Nicolson method and the explicit second-order
Adams-Bashforth method are considered. The influences of the two time
discretizations, choice of grid size and time-step size and multigrid per-
formance on the numerical accuracy and computational efficiency are dis-
cussed.

1. Introduction

Due to the foreseeable progresses in the performance of computer systems,
it can be expected, that in the near future the Large Eddy Simulation
(LES) will become more important and applicable also in industrial prac-
tice. However, efficient numerical algorithms designed for modern parallel
computer architectures with facilities to allow the modeling of complex ge-
ometries are another crucial issue in the application of LES. In this way it
will be possible to achieve a sufficient numerical resolution and geometrical
flexibility also to deal with complex practical problems within reasonable
computing times.

Numerical aspects such as spatial and temporal discretization, solu-
tion algorithms and resolution requirements , and modeling aspects such as
subgrid scale models are effecting the accuracy and efficieny of the simula-
tions. Due to the enormous computational requirements for LES, there can
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be found few systematic investigations about the above mentioned aspects.
Despite that different groups have organized LES workshops for specified
test cases, it was difficult to come to any definite conclusions about the
performance of different applied numerical methods as well as the varying
subgrid scale models.

In this study the accuracy and performance of a finite-volume multigrid
solver for LES is investigated. The main focus of the present contribu-
tion will relate to the following aspects with respect to their influences on
the numerical accuracy and computational efficiency of the considered ap-
proach: comparison of the explicit/implicit methods, choice of grid size and
time-step size and multigrid performance.

For this an already well investigated turbulent channel flow will be con-
sidered for comparison to other results from the literature.

2. Numerical Procedure

The governing equations for an incompressible flow are given by

Oaii 0= , (1)
Oxi
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where fii are the velocity components of the resolved scales with respect
to the Cartesian coordinates xi, p is the corresponding pressure, M is the
viscosity, p is the density and t is the time. The subgrid scale stresses

rij = p (M7uij -- uiu) (3)

are modeled by the Smagorinsky model [1] and the dynamic Germano model
[2] to close the problem. In order to stabilize the dynamic model, the nega-
tive values for the parameter C, of the underlying Smagorinsky model are
clipped.

The basic flow solver is the FASTEST-3D code (INVENT Computing,
Erlangen) [3] with extensions for LES. The solver is based on a fully con-
servative finite-volume method for solving the incompressible Navier-Stokes
equations on a non-staggered, cell-centered grid arrangement. The spatial
discretization method employed is a second-order accurate central differ-
encing scheme for block-structured non-orthogonal boundary-fitted grids.
For time discretization of the momentum equations we consider two dif-
ferent approaches: the implicit second-order Crank-Nicolson method and
the explicit second-order Adams-Bashforth method. Both methods define
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approximations 0 and p,, to the solution of the continuous problem at the
time levels tn = nAt (n = 1, 2, ...), where the parameter h is a measure
for the spatial resolution and At > 0 is the time-step size.

Within the implicit method, for each time-step, assuming that the un-
knowns at the time level tn-1 have already been computed, the unknowns

at the time level t, have to be determined as the solution of a nonlinear
algebraic system. For this a nonlinear full approximation multigrid scheme
with a pressure-correction smoother is employed [4].

The smoothing procedure is based on a variant of the well-known SIM-

PLE algorithm proposed by Patankar and Spalding [5]. The determination
of it' and p' is done in several steps. In the first step, after the calculation
of the turbulent viscosity, an intermediate approximation to 0 is obtained
by solving the discrete momentum equations with the pressure term, the
source term and the matrix coefficients formed with values of the previ-
ous iteration. In the second step, corrections Aph' and A02 are sought to
obtain the new pressure p'- and the new velocity i exactly satisfying the
continuity equation. By considering a modified discrete momentum equa-

tion together with the discrete continuity equation, an equation for the
pressure correction Aph' is derived, where a selective interpolation tech-
nique is used for making the cell face velocities dependent on the nodal
pressure, which is necessary to avoid oscillatory solutions that may occur

owing to the non-staggered grid arrangment[6]. To improve the diagonal
dominance in the pressure-correction equation the contributions due to grid
non-orthogonality are neglected. The smoothing iteration step is completed
by correcting the velocity components and the pressure. To ensure conver-
gence, for the velocity components and the pressure an under-relaxation in
the variant suggested by Patankar [7] is employed. For the solution of the
linear system of equations the Strongly Implicit Procedure (SIP) of Stone
[8] is used. The global outer multigrid procedure is implemented as a non-
linear full approximation scheme, in which the above pressure-correction

scheme acts as the smoother. The different grid levels are visited following
the standard V-cycle approach, where second-order interpolation is em-
ployed for the grid transfers. This procedure is repeated till convergence is

reached.

Within the explicit method, first the turbulent viscosity and the veloc-
ity f' are calculated explicitly from the unknowns at the time level tn-1.

Then the pressure correction equation is derived using the modified dis-
crete momentum equation together with the discrete continuity equation.
The corresponding resulting linear system is solved by a linear multigrid
method. The computation of the time level t,, is completed by correcting
the velocity components and the pressure. In Figure 1 a schematical flow
diagram of both methods is given.



428 S. ERTEM-MfLLER AND M. SCHAFER

Implicit Method

Explicit Method

Preparing time stepsP

Assembletgri & oveClcltinofj+ji

[ Mutigrd (FS) Preparing time steps}

Calculation of +C tal

Assemble & solve SIPcsolver of the t

Assemble & solve
pressure correction eqn M s

pCorrection of velocitiesp

S& pressure

C onvergence?

Figure 1. Flow diagram of implicit/explicit methods.

3. Numerical Results

The following investigations concern the accuracy and the numerical effi-
cieny of the methods given in the previous section. All computations were
carried out on a Compaq AlphaServer ES40 667 MHz.

As a test case the turbulent flow between two parallel plates seperated
by a distance 2J is investigated. The flow is driven by a uniform streamwise
pressure gradient. The Reynolds number Re, = 395 (Reb = 6875) based
on half-width and friction (or bulk) velocity is considered. Since the stream-
wise and spanwise directions (i.e. x and z) are formally infinite, periodic
boundary conditions are used for the simulation of a finite domain. The
computational domain has the dimensions 2irJ x 2J x 7rd which are con-
sidered to be large enough to avoid adverse effects of the periodic bound-
ary conditions. Initial conditions with random fluctuations are given to
assure turbulence. Three different grids with 64 x 32 x 32, 96 x 48 x 48 and
128 x 64 x 64 control volumes (CVs) are employed in x, y, z directions. The
grids are equidistant in streamwise and spanwise directions where in the
wall-normal direction a geometric progression is used for the grid density.
The first point away from the wall is at y+ - 9.25 for the coarse grid,
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y+ ; 6.17 for the medium grid and y+ z 4.62 for the fine grid. Before

starting the computation of mean values and statistics of tihe flow, the si-
mulations are carried out until the numerical solution reached a statistically

steady state. All data are computed from the appropriate quantities and
averaged in the homogeneous spatial directions x and z and in time. The
averages in time are taken over 200 s in each case. The results are compared

to the DNS data given in [9].
First, a validation of the applied subgrid models is carried out. In Figure

2 (left) a comparison of the mean velocity profile Urn normalized by the fric-
tion velocity u, in the normalized half channel width is given. The results
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Figure 2. Comparison of mean velocity profile (left) and rms velocity profile (right)
between LES and DNS.

calculated with the finest grid and the Germano model correspond well with

the reference data. Figure 2 (right) shows the root mean square Urms of the
velocity in streamwise direction normalized by the friction velocity u, in
normalized half channel width for three grids with the Smagorinsky model.

Compared with the DNS data the LES results for the coarse grid show
slightly lower fluctuations. However, the overall agreement is satisfactory
and with grid refinement the profile approaches the reference data.

Next, the numerical efficiencies of the explicit and implicit methods are

investigated. Figure 3 shows the comparison of both methods without the
multigrid solver for CFL=0.5, where the computational time per time-step
against the number of CVs is plotted. The CFL-number is defined by

CFL = max [ iii/Axi .At,CV L~

where the maximum is taken over all control volumes (CV). It is observed
that without a multigrid solver the implicit method is more efficient than
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Figure 3. Comparison of explicit and implicit methods without the multigrid solver for
CFL=0.5 with varying grid size.

the explicit method, where the differences in CPU-time increase with grid
refinement. This is due to the fact, that within the explicit method, the
pressure-correction equation has to be solved very exactly, since it is solved
only once. Thus the CPU-time for solving the linear system without the
multigrid solver is very high and the computational effort increases rapidly
when the grid is refined.

In Figure 4 the computational time per time-step against the number of
CVs for both methods with the multigrid solver for the same CFL-number
is plotted. The multigrid approach yields an acceleration for both methods.
The acceleration for the explicit method is much higher as for the implicit
method, such that the explicit method becomes superior to the implicit
one.
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Figure 4. Comparison of explicit and implicit methods with the multigrid solver for
CFL=0.5 with varying grid size.
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Since there exists no strict time-step limitation, of course, with the
implicit method computations with higher CFL numbers are possible. In
Figure 5 the computing times against the number of CVs are plotted for
the implicit method using CFL=6 and the explicit method using CFL=0.5.
It can be seen that even in this comparison the explicit method still turns
out to be slightly more efficient. In order to see how the time-step size is
effecting the results of the computations, in Figure 6 the root mean square
values U,.ms of the velocity in streamwise direction normalized by the fric-
tion velocity u, in the normalized half channel width for the coarse grid
with the Smagorinsky model is shown for different CFL-numbers. The com-
putations with a larger time-step size (CFL=6) overpredict the streamwise
fluctuations when compared with the smaller time-step size (CFL=0.5).
Further test computations have shown that using even larger time-step
sizes (e.g. CFL=10) yield rather poor results, such that for the considered
test case CFL=6 can be viewed as the maximum value to achieve physically
reasonable results.
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Figure 5. Comparison of explicit and implicit methods with the multigrid solver for
different CFL-numbers and varying grid size.

4. Conclusions

The numerical accuracy and efficieny of explicit and implicit methods with
and without multigrid for Large Eddy Simulation has been investigated. For
the comparisons the simple well known turbulent channel flow is consid-
ered. Without using the multigrid solver, the computational requirement for
the explicit method increases very rapidly with increasing number of grid
points, such that in this case the implicit method is superior. However,
when employing the multigrid solver, a high acceleration for the explicit
method can be realized, which makes the method more efficient than the
implicit one. It has been shown, that with the implicit method it is possible
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Figure 6. Comparison of rms velocity profile for different CFL-numbers.

to achieve also for CFL>I physically reasonable results, but comparing the
overal computational performance the explicit method still turned out to
be superior.

Of course, it would be of interest, if the findings for the considered
geometrically very simple test case will also be confirmed for problems in
more complex geometries. The situation may change in such cases, when it
is necessary to use more irregular grids with higher variations of control-
volume sizes. Here, the advantages of the implicit method, where there is
no need to adjust the time-step size to the smallest control volumes, can
become more dominant. Corresponding investigations will be a topic of
forthcoming work.
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